

Chongqing University of Technology

Label-Driven Denoising Framework for Multi-Label Few-Shot

Aspect Category Detection

Fei Zhao^{1*} Yuchen Shen^{2*} Zhen Wu^{1†} Xinyu Dai¹
¹National Key Laboratory for Novel Software Technology, Nanjing University
²School of Information and Software Engineering,
University of Electronic Science and Technology of China
zhaof@smail.nju.edu.cn, alexchicharitoshen@gmail.com
{wuz, daixinyu}@nju.edu.cn

https://github.com/1429904852/LDF

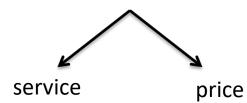
EMNLP 2022

Chongqing University of Technology

1.Introduction

2.Method

3.Experiments



Introduction

Aspect Category Detection (ACD)

FS-ACD

The service is good although rooms are pretty expensive.

	Support set
Aspect Category	Sentences
(A) food_food_meat_burger	 (1) first time, burger was not fully cooked and my smash fries were cold. (2) food was over priced, but okay not great.
(B) food_mealtype_lunch	(1) my brother and i stopped in for lunch.(2) lunch has a great option of picking one or two food with rice.
(C) restaurant_location	(1) i prefer the other location to be honest.(2) there's a new standard in town.
	Query set
Aspect Category	Sentences
(B)	(1) went back today for lunch.
(A) and (C)	(2) food is whats to be expected at a neighborhood grill.

Table 1: An example of 3-way 2-shot meta-task. A sentence (instance) may belong to multiple aspects.

Introduction

 due to lack of sufficient supervised data, the previous methods easily catch noisy words irrelevant to the current aspect category, which largely affects the quality of the generated prototype;

• the semantically-close aspect categories usually generate similar prototypes, which arenmutually noisy and confuse the classifier seriously

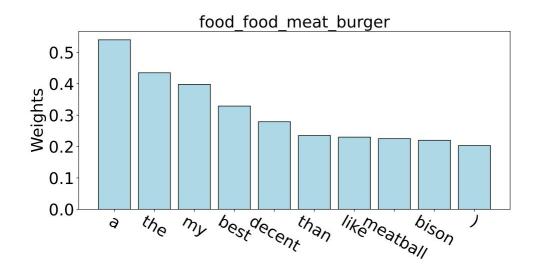


Figure 1: Visualization of the top-10 words for the prototype of aspect category *food_food_meat_burger* according to the attention weights of *Proto-AWATT*.

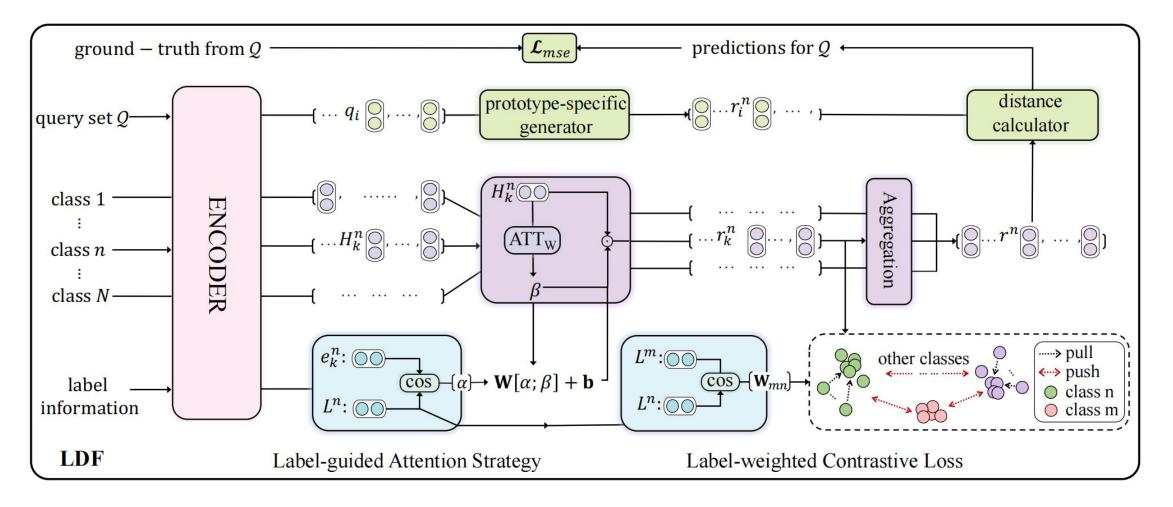
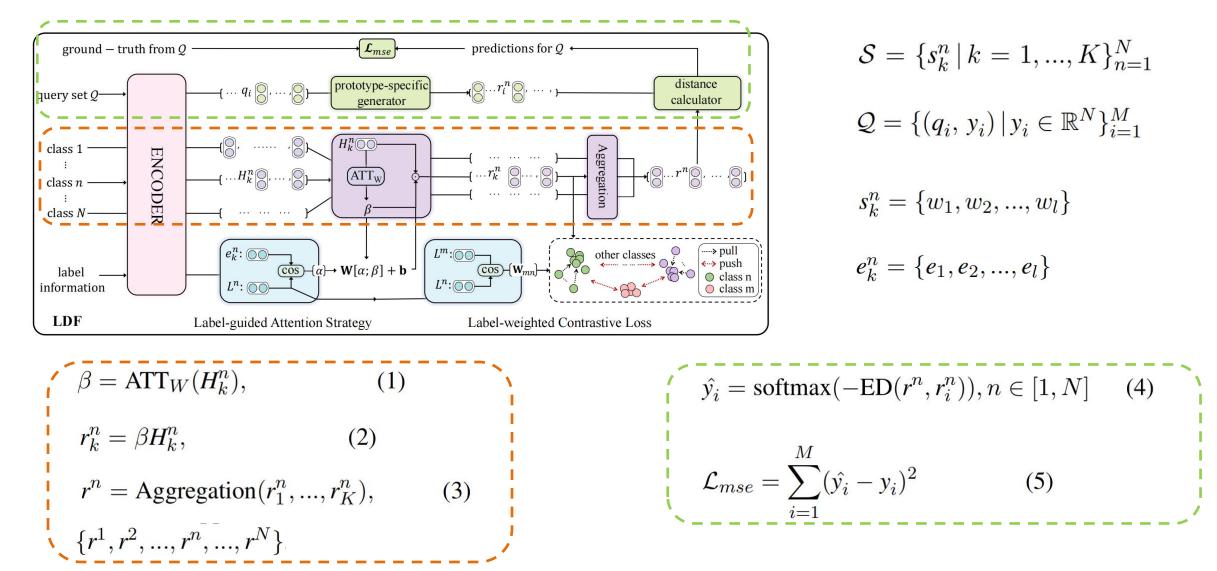
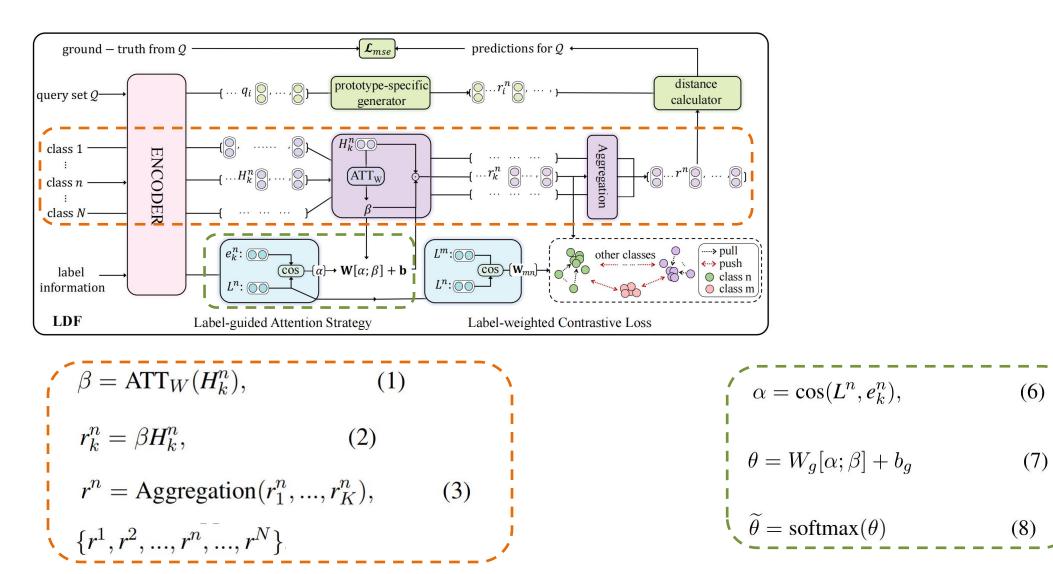
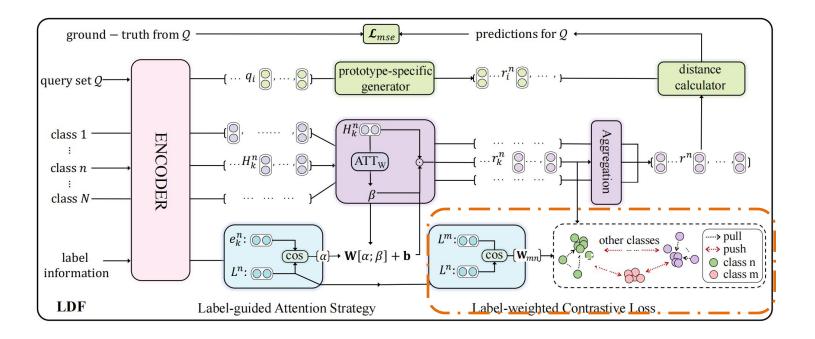



Figure 2: The overview of our proposed LDF framework.



Method



Method

"food_food_meat_burger"

"food_mealtype_lunch"

"room_bed"

$$\mathcal{L}_{scl} = \sum_{(n,k)\in(N,K)} \frac{-1}{|P(n,k)|} \sum_{\substack{r_p^n \in P(n,k) \\ r_p^n \in P(n,k)}} \log \frac{\exp(r_k^n \cdot r_p^n/\tau)}{\sum_{r_k^m \in (N,K)\setminus(n,k)} \exp(r_k^n \cdot r_k^m/\tau)}$$
(9) $w_{mn} = \cos(L^m, L^n),$ (11)

$$\mathcal{L}_{lcl} = \sum_{(n,k)\in(N,K)} \frac{-1}{|P(n,k)|} \sum_{r_p^n \in P(n,k)} \log \frac{\exp(r_k^n \cdot r_p^n/\tau)}{\sum_{r_k^m \in (N,K)\setminus(n,k)} w_{mn} \cdot \exp(r_k^n \cdot r_k^m/\tau)} \quad (10) \qquad \mathcal{L} = \mathcal{L}_{mse} + \lambda \mathcal{L}_{lcl} \tag{12}$$

A TA I Advanced Technique of Artificial Intelligence

Dataset	#cls.	#inst./cls.	#inst.
FewAsp(single)	100	200	20000
FewAsp(multi)	100	400	40000
FewAsp	100	630	63000

Table 2: Statistics of three datasets. **#cls.** is the number of classes. **#inst.** is the total number of instances. **#inst./cls.** is the number of instances per class.

	0	
L' VIN	O TAI TOO	ADTO
	erim	
		(ATT AP)

Models	5-way 5-shot		5-way 10-shot		10-way 5-shot		10-way 10-shot	
wodels	F1	AUC	F1	AUC	F1	AUC	F1	AUC
FewAsp								
Proto-HATT	70.26	91.54	75.24	93.43	57.26	90.63	61.51	92.86
LDF-HATT	73.56[†]±0.47	92.60 [†] ±0.23	78.81[†]±0.93	94.75[†]±0.43	60.68 [†] ±0.92	91.22±0.53	67.13 [†] ±0.94	94.12 [†] ±0.29
Δ	+3.30	+1.06	+3.57	+1.32	+3.42	+0.59	+5.62	+1.26
Proto-AWATT	75.37	93.35	80.16	95.28	65.65	92.06	69.70	93.42
LDF-AWATT	78.27[†]±0.89	94.65 [†] ±0.41	$81.87^{\dagger} \pm 0.48$	95.71±0.26	67.13 [†] ±0.41	92.74±0.12	71.97 [†] ±0.49	94.29±0.25
Δ	+2.90	+1.30	+1.71	+0.43	+1.48	+0.68	+2.27	+0.87
			1	FewAsp(single)				
Proto-HATT	83.33	96.45	86.71	97.62	73.42	95.71	77.65	97.00
LDF-HATT	84.41[†]±0.46	97.06 ±0.16	88.15 ^{\dagger} ±1.00	98.12±0.31	76.27 [†] ±1.08	96.38±0.37	80.54 [†] ±0.97	97.45 ±0.14
Δ	+1.08	+0.61	+1.44	+0.50	+2.85	+0.67	+2.89	+0.45
Proto-AWATT	86.71	97.56	88.54	97.96	80.28	97.01	82.97	97.55
LDF-AWATT	88.16[†]±0.62	98.29±0.32	89.32±0.92	98.38±0.13	81.73[†]±0.96	97.51±0.33	84.20[†]±0.21	97.96±0.30
Δ	+1.45	+0.73	+0.78	+0.42	+1.45	+0.50	+1.23	+0.41
				FewAsp(multi)				
Proto-HATT	69.15	91.10	73.91	93.03	55.34	90.44	60.21	92.38
LDF-HATT	72.13[†]±0.79	92.19[†]±0.33	76.52 ^{\dagger} ±0.74	93.68±0.36	59.10 [†] ±1.04	91.00 ±0.51	65.31 [†] ±0.57	92.99 ±0.24
Δ	+2.98	+1.09	+2.61	+0.65	+3.76	+0.56	+5.10	+0.61
Proto-AWATT	71.72	91.45	77.19	93.89	58.89	89.80	66.76	92.34
LDF-AWATT	73.38 [†] ±0.73	92.62 [†] ±0.32	78.81 [†] ±0.19	94.34 ±0.15	62.06 [†] ±0.54	90.87 [†] ±0.48	68.23 [†] ±0.98	92.93 ±0.44
Δ	+1.66	+1.17	+1.62	+0.44	+3.17	+1.07	+1.47	+0.59

Models	5-way 5-shot		5-way 10-shot		10-way 5-shot		10-way 10-shot	
would	F1	AUC	F1	AUC	F1	AUC	F1	AUC
Proto-AWATT	75.37	93.35	80.16	95.28	65.65	92.06	69.70	93.42
Proto-AWATT+LAS	77.31±1.96	$94.42 {\pm} 0.67$	81.19±0.84	95.49±0.36	66.48±3.02	92.54±0.70	71.12 ± 1.14	94.26±0.40
Proto-AWATT+LCL	77.06 ± 0.71	$94.20{\pm}0.26$	80.78±0.39	$95.44 {\pm} 0.22$	66.20±1.26	$92.38 {\pm} 0.45$	70.83±0.66	94.07±0.33
Proto-AWATT+SCL	76.11±1.76	93.67±0.80	80.24±2.99	95.31±1.01	65.76±2.17	92.36±0.60	70.03 ± 2.69	93.93±0.67
LDF-AWATT	78.27 ±0.89	94.65 ±0.41	81.87 ±0.48	95.71 ±0.26	67.13 ±0.41	92.74 ±0.12	71.97 ±0.49	94.29 ±0.25

Table 4: Ablation study over two main components on FewAsp dataset. The ablation results of FewAsp(single) and FewAsp(multi) datasets are included in **Appendix A.3**.

A TA I Advanced Technique of Artificial Intelligence

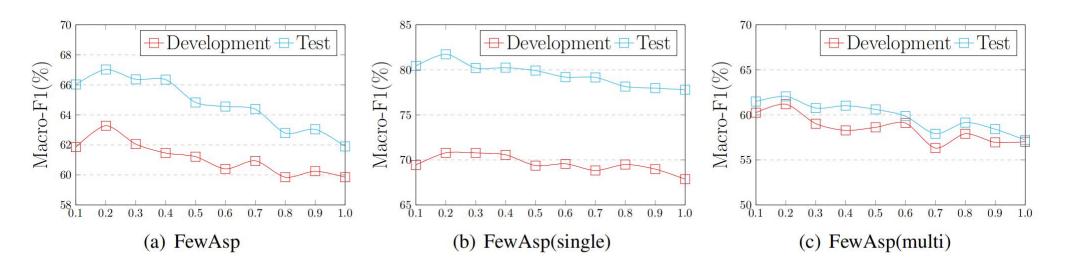


Figure 3: Effect of λ in the 10-way 5-shot setting on three dataset.

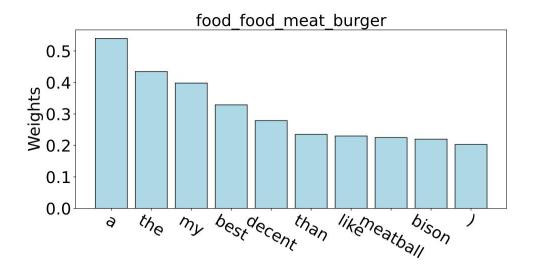


Figure 1: Visualization of the top-10 words for the prototype of aspect category *food_food_meat_burger* according to the attention weights of *Proto-AWATT*.

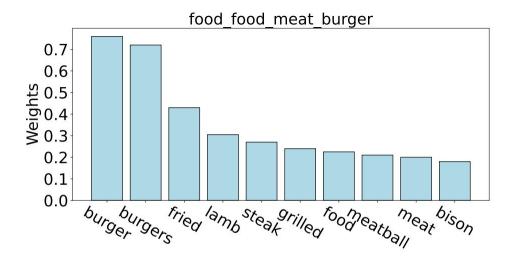


Figure 4: Visualize the top-10 words for the prototype of aspect category *food_food_meat_burger* based on the attention weights of *Proto-AWATT+LAS*.

A TA I Advanced Technique of Artificial Intelligence

Madala	GloVe	+ CNN	BE	RT
Models	F1	AUC	F1	AUC
Proto-HATT ^{&}	57.26	90.63	57.33	89.70
LDF-HATT	60.68±0.92	91.22±0.53	63.72±0.27	91.99±0.12
Proto-AWATT [*]	65.65	92.06	70.09	94.59
LDF-AWATT	67.13±0.41	92.74±0.12	72.76±0.29	95.31±0.19

Table 5: The effect of different encoders in the 10-way 5-shot scenario on FewAsp dataset. The results with symbol * are retrieved from (Hu et al., 2021).

Madala	10-way 5-shot				
Models	F1	AUC			
Proto-AWATT	65.65	92.06			
Proto-AWATT (LSW)	57.84±0.49	90.85±0.22			

Table 6: The effect of label similarity weight α in the 10-way 5-shot scenario on FewAsp dataset.

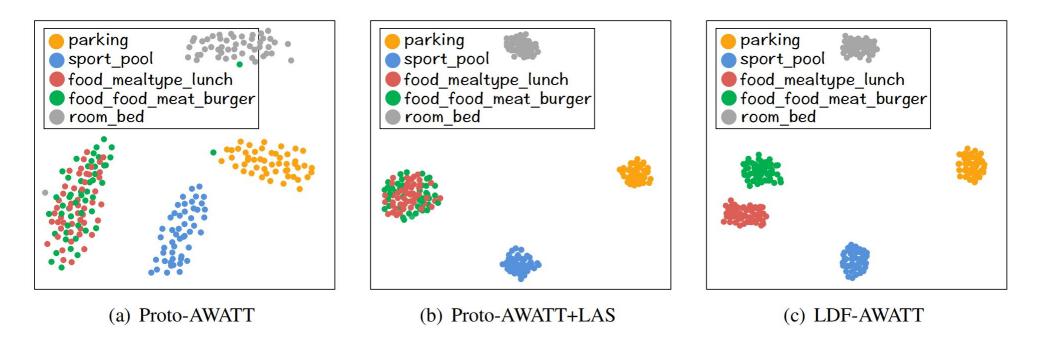


Figure 5: Visualization of prototype representations for Proto-AWATT, Proto-AWATT+LAS and LDF-AWATT.

Thank you!